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Singular integrodifferential equations of the first kind with a symmetric kernel having a 
3’ In 1s - tl/t% iit singularity (i.e., a derivative of a Cauchy-type kernel) are studied. An 
algorithm based on the expansion in Chebyshev polynomrals of the second kmd is presented. 
The method is applied to two-dimensional wave-scattering, and convergence is demonstrated. 

1. INTRODUCTION 

Two-dimensional wave-scattering by thin soft scatterers lead to integrodifferential 
equation of the form 

2 

& + B(s, 1) 
I 

In (s - t I + C(s, t) 
I 

dt = g(s), ISI < 1, (1.1) 

where F(t) is the unknown function, g(s) is the forcing function, and B(s, t) and 
C(s, t) are symmetric regular kernels [ 11. By the notation 3’ In ]s - t ]/as at we mean 

(1.2) 

Integrodifferential equations of the Cauchy type are generally treated within the 
framework of Cauchy-type singular equations [ 21. For the special case of (1.1) the 
transformation is accomplished by integrating both sides of (1.1) over s, and using 
specified boundary conditions of F(t). 

However, by doing so we lose the symmetry of (1.1). In this paper we present a 
direct solution of Eq. (1. l), which preserves the symmetry of the equation. 

It is well known that for smooth enough regular kernels and forcing function, the 
solution F(t) exhibits square-root zeros at the edges of the scatterer [5]. We rewrite 
Eq. (1.1) in the form 

i’, (1 - t2Y2fW 1 [A + B(s, t) ] In 1s - t( + C(s, t) 
I 

df = g(s), ISI < 1. (1.3) 
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Our approach for solving (1.3) is similar to the one presented in an accompanying 
article on singular integral equations with a logarithmic kernel [ 3 1. There, Chebyshev 
polynomials of the first kind are eigenfunctions of the operator: here, Chebyshev 
polynomials of the second kind play the same role since 

J -’ (1 - t*)‘!* U,(t) a2 Eln1s-r\d’=+r(n+ l)U,(s). ISI < 1. (1.4) 
-1 

The application of (1.4) for the solution of (1.3) with constant regular kernels has 
been described by Butler and Wilton 141. This special case of (1.3) appears in the 
quasistatic limit of scattering by a strip. 

In this article we generalize the results of Butler and Wilton, by expanding all 
relevant functions in Chebyshev polynomials of the second kind. By using functional 
analysis we study the properties of the solution and its convergence. We further 
describe the numerical algorithm, and finally, present several numerical results. 

2. THEORY 

As pointed out, Eq. (1.4) naturally suggests that the solution of (1.3) be accom- 
plished by expansion in Chebyshev polynomials of the second kind. Let L’(T,p) 
denote the Hilbert space of all complex-valued functions square integrable on 
f = (-1, 1) with respect to the weight p(t) = (1 - t*)““. It is well known that the 
Chebyshev polynomials of the second kind (U,(x)) comprise a complete orthogonal 
set in L*(T,p). Moreover, the series CF-;“-, f,U,(x) with 

f+;, (1 -X*)“* U,(x)f(x)dx. (2.1) 

converges in the mean to the functionf(x). The norm in this Hilbert space is simply 

llfl/* = (’ (1 -x~)“~ \f(x)l’ d.x=+ 2 ij-,l’. 
I fl=” 

U.2) 

We study bounded integral operators .Z within L*(f,p) of the form 

.Tf = !” (1 - t*)“’ K(s, t)f(t) dt. (2.3) 
-1 

We start with completely continuous operators which obey the sufficient condition 

We may prove 
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THEOREM I. 1fX is a compact campiete~ ~o~ti~~o~s operator, then the douche 
expansion 

J, h 
K,&, t) = 1 x K,, U,(s) u,(t), (2.5 

in=0 n-o 
) 

with 

Kmn=;j’ f (l-s2)“2(1-t2)“2K(s,t)U,,,(~)Un(t)dsdt (2.6 
-I -1 

) 

converges in the mean to K(s, t) as M, N -+ 03. That is, jbr any E > 0 there are M,, 
and No such that for euery h4 > M,, and N > No. 

.1 1 
J I 

(1 - s~)~‘* (I - t*)“’ lK(s, t) - K,,Js, t)\” ds dt < 6. (2.7) 
-1 --I 

We now prove Theorem II about the logarithmic kernel. 

THEOREM II. The irttegral operator ;/ 

ir’f= ii (1 -t’)“” In /s- t/f(t)dt, 
--I 

where f (t) E L. *(r, p) is a self-adjoint completely continuous operator. 

ProoJ It is well known that 

I 
.I In/s-tj T,(t) 

(1 -t*)‘.” 
dt = --TV,, T,(s). 

*-1 

(2.9) 

(2.10) 

where u0 = In 2, v, = l/n (n > 0). and T,(t) are the Chebyshev polynomials of the 
first kind. We show that the operator 9’ obeys condition (2.4). Using (2.10) we find 

L,,=L/.’ Ji (l-st)“Z(l-t~)i~~U,,,(s)Un(t)ln~s-t~dsdt 
x2.-1 -, 

where 

dm, = (’ (1 - s*)‘,‘* u,(s) T,(s) ds = 3 {a,, - 6,+2<,1. (2.12) 
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Finally, we have, 

A direct caiculation confirms that C&z -;-() IL,, 1’ converges. 
We further discuss the inverse operator of a completely continuous operator A. 

Let 3” be bounded on a subspace MC L2(T, p), such that .PX’ and .W.P are the 
identity operators for properly defined functions. If .3 is represented by a matrix K, 
and the bounded opertor P by the matrix f, then 

J,‘, = -$ w I L, * (2.13) 

The factor 4/n’ results from the fact that the Chebyshev polynomials, (U?,(.u)i are 
not normalized. 

We now prove 

THEOREM III, The i~tegrodl~r~~tiu~ operator whose kernel is f(s, t) = 
ii2 In Is - t//lb at LY the inverse of the completely continuous operator d whose ken& 
is 

Proof. Obviously A is completely continuous since 

It is well known that 

f .I (I -t’)“‘~df=-rrT,,,i(s). -1 

(2.14) 

(2.15) 

(2.16) 

Therefore, 

(2.17) 

which is identical to (1.4) Thus 

= (-2)(n t 1) 6,“. (2.18) 
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However, this is identical to (4/~*~(~-‘)~~, which proves our statement. 
Moreover, 

Y-f = f’ (1 - tZ)“2 J(s, t)f(t) dt * ---?I c (n + 1 )s,, U,(s) (2.19) 
I II 0 

so that ,PJE,!,‘(T,p) if and only if JY’~& (n + i)* If,l’ < co. The last condition 
defines the subspace of L’(T, p) in which the operator F is detined. 

We generalize Theorem III in the following form: 

THEOREM IV. Let .d be a cornplete~~~ co~t~~~o~s operator, that obeys (2.4), and 
let P be its inverse. Let also .F be a bo~~~e~ operator. Teen P f, F is the inverse 
of the operator (,7 +XF)-l.3. 

ProoJ If Z is a completely continuous of the Hilbert-Schmidt type and .W is 
bounded, then .XF obeys (2.4) also, and (, 7 + ;V.F)- i exists. However, Y- +, 9’ = 
,P(-W +.PKF’) so that 

(Y- + W)-’ = (.W -t-,3 F)-9. 

We conclude by showing that Eq. (1.3) obeys Theorem IV, and therefore can be 
solved by inversion. It is cIear that the integral operator whose kernel is B(s, t) 
In /s - t/ + C(s, t) is bounded. The operator whose kernel is 8’ In /s - r I/& at fulfills 
the requirements of the operator <Y, so that the diagonal operator A is defined by 
(2.14) (Theorem III). 

3. ALGORITHM 

As described in Section 2, the solution of (1.3) is accomplished by expansion in 
Chebyshev polynomials of the second kind. The functions g(s) andf(t) are expanded 
by (2.1). The coetlicients (g,] are calculated by a modified Chebyshev quadrature 

gn= & .$ &,)[T,,,(xj) - T,+,)l. t-o 
xi=COS i’:~:~]. (3.1) 

The kernel C(s, t) is expanded similarly 

C(s, t> = 2 C,” U,(s) U,(t). (3.2) 
lTl,tl-0 

1 
cmn Cc (iv t 1)2 r.Fo ’ C(~i~Xj>IT~~X~)-T~+2CX~>IIT~(Xj)-T~+2(Xj)I. (3.3) 
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The matrix elements of 8’ In /s - t//as at have been calculated already (2.18). We 
are finally left with the matrix elements of B(s, t) In js - r/. We use the formula 

‘* 
In 1s - tl- - \’ LJIT[(f) T,(s), 

/Y, 
~9, = In 2, z), = 2/l, (3.4) 

where 7’,(f) are the Chebyshev polynomials of the first kind, and find 

2.1 .I 
(‘,I I 7L 

(1 - t2)“2 (1 -s’)“’ U/,(s) U,(t)B(s, t) In /s - tldsdf 
_-,.-I 

=a ;I i~,-l*,l-i+~m+i.n~i-~,-m-2.~-1+~m-i.n+I+~m+i.,+r 
ITI 

-B I-m--Z.n+l -B m-1.1-n-2 -B mt/,l-,1-z -+~,-m-z.r-n-~l -&In* (3.5) 

The matrix equation for finding f is f = Z-‘g, where 

z,, = b/2) cm, - ~4t,,,(~ + 1) + (7G3)P,,,- (3.6) 

4. NUMERICAL EXAMPLES 

In this section we present numerica results for some integrodifferentjai equations 
corresponding to scattering of an H-polarized EM wave by an open thin two- 
dimensional scatterer. Let the scatterer be defined by the parametric equations 
(x(t). .r(t)), Then the equation for the current density is 

X Hb”(k IP(s) - p(t)]) dt = g(s). (4. I ) 

We reduce (4.1) into the form (1.3) (Ill). and use the algorithm described. 
The first example is the scattering of a plane wave by a strip p(t) = fivt, 0). The 

equation we have to solve is 

The parameters for this example are LY = 0 (i.e.. symmetrical excitation) and 
kw = 37~. The calculated coefficients (f,} are presented in Table I for different 
dimensions N of the matrix Z (Eq. (3.6)). The convergence of the results is obvious. 
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TABLE I 

Chebyshev Expansion Coefficients (f,} for Plane-Wave Scattering by a Strip (kw = 3n) 

II N=6 N= 10 N= 14 

0 0.63883 + j.0207 1 0.62896 + j.02096 0.62891 + j.02100 
2 0.19363 + j.07 175 0.16439 $ j.07705 0.16425 + j.0772 I 
4 0.01842 + j.09014 -0.01575 + j.11260 -0.01585 + j.I 1286 
6 -0.12693 + j.03784 -0.11134 + 1.06874 -0.11116 + j.06883 
8 0.05760 - j.07372 0.05762 - j.07411 

10 -0.01420 + j.0244 I -0.01454 + j.02522 
12 0.00240 - j.00503 
14 -0.00029 + j.00068 

The second example is the scattering of a plane wave by a semicircular cylinder 
p(s) = (a cos(nt/2, a sin(z?/2)). The equation for the current reads 

j’ (1 - s’)“‘f(S) ] 
-1 

k2a2 cos (3 (s - 1)) - ~~~~*‘[2kasin/g,s-i,j]ds 

The results for a = 7t/2 and ka = 7c are presented in Table II. Again a rather fast 
convergence is observed. 

TABLE II 

Chebyshev Expansion Coefficients (f,} for Plane-Wave Scattering by a Semurcular Strip (ka = n) 

n N=6 N= 10 N= 14 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I1 
12 
13 
14 

0.02896 - j. 1282 I 0.02882 ~ j. 12835 
0.34364- j.11979 0.34430 - j. 12009 
0.11377 + j.03063 0.11312 t j.03084 

-0.02306 + j.23736 -0.02141 + j.23673 
-0.12342 + j.02684 -0.12317 + j.02713 
-0.02539 - j.10213 -0.02760 ~ j.1053 1 

0.05847 - j.01054 0.05935 - j.01088 
0.00745 + j.03266 

-0.0 1746 + j.00 195 
-0.00097 - j.00833 

0.00405 - j.00022 

0.0288 I - j. 12836 
0.34420 - j.12018 
0.1 13 18 + j.03080 

-0.02 137 + j.23679 
-0.12319 + j.02715 
-0.02763 ~ j. 1053 1 

0.05934 ~ j.0 1089 
0.00746 + j.03265 

-0.0 1744 t JO0 I95 
-0.00097 - j.00838 

0.00406 - j.00022 
0.00008 + j.00183 

-0.00082 + j.00002 
0. ~ j.00035 
0.000 15 ~ I.0 
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TABLE 111 

Chebyshev Expansion Coeffkients {f,i for Plane-Wave Scattering by a Parabolic Reflector 
(9' I.h=n) 

n 

0 
2 
4 
6 
8 

10 
I2 
14 
16 

N=8 N=12 
----- 

0.15314+ j.10412 0.15200 + j.10229 
0.03078 +j.O3082 0.02896 i-j.03031 
0.77261 -j.57645 0.76771 -j58310 

-0.21726 ij.21986 -0.28261 ij.22703 
-0.14783 +J.04176 -0.15246 +~04407 

0.05218 -j.O300 1 
0.00975 +j.O0026 

N= 16 
.._~. 

0.15199 +j.10228 
0.02896 -tj.03031 
0.76768 -j.58314 

-0.28269 +j.22706 
-0.15249 i j.04610 

0.05235 --j.03001 
0.00987 + j.00021 

-0.00348 +j.OOl54 
-0.00032 - j.00012 

Finally, we present the results for a plane wave scattering by a parabolic reflector 
p(s) = (wt, qwt’). The integrodifferential equation is 

“f, (1 -s’)“?J(S) )k%2(1 +4qzI’)-Gi ii” i H;2’(kwlt-sl(l -tq(t+$)) 

= jvw(sin (r _ 2q* ~0s a) ~~~‘f(c~S~t4fsinff), (4.4) 

Results for q = 1, kw = 27c, and a = 742 are presented in Table III. The convergence 
of the coeffkients is clearly demonstrated. 
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